Partial Fourier series on compact Lie groups
نویسندگان
چکیده
منابع مشابه
Lacunary Fourier Series for Compact Quantum Groups
This paper is devoted to the study of Sidon sets, Λ(p)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, Λ(p)-sets and lacunarities for LFourier multipliers, generali...
متن کاملThe Existence of Nonabsolutely Convergent Fourier Series on Compact Groups
1. J. W. S. Cassels, An introduction to diophantine approximation, Cambridge University Press, 1959, Chapter IV, §5. 2. J. F. Koksma, Diophantische Approximationen, Ergebnisse der Mathematik, vol. IV, Berlin, Springer, 1937, Chapter VIII, §3. 3. G. M. Petersen, Almost convergence and uniformly distributed sequences, Quart. J. Math. vol. 7 (1956) pp. 188-191. 4. H. Weyl, Uber die Gleichverteilun...
متن کاملLacunary Fourier series and a qualitative uncertainty principle for compact Lie groups
We define lacunary Fourier series on a compact connected semisimple Lie group G. If f ∈ L1(G) has lacunary Fourier series and f vanishes on a non empty open subset of G, then we prove that f vanishes identically. This result can be viewed as a qualitative uncertainty principle.
متن کاملCompact Lie Groups
The first half of the paper presents the basic definitions and results necessary for investigating Lie groups. The primary examples come from the matrix groups. The second half deals with representation theory of groups, particularly compact groups. The end result is the Peter-Weyl theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin des Sciences Mathématiques
سال: 2020
ISSN: 0007-4497
DOI: 10.1016/j.bulsci.2020.102853